Skip to main content

Human IFN-Alpha All Subtype ELISA Kit, High Sensitivity (Serum, Plasma, TCM)

Hero Region

Human IFN-Alpha All Subtype ELISA Kit, High Sensitivity (Serum, Plasma, TCM)

Catalog Number: 41115

This ELISA measures human IFN-Alpha levels in normal & autoimmune sera, plasma, and tissue culture media (TCM) with an LLOQ of 1.95 pg/ml. It detects all 12 IFN-Alpha subtypes for accurate, total measurement in samples.

 

Product Name: VeriKine-HS Human Interferon-Alpha All-Subtype ELISA Kit (Serum, Plasma,TCM)

$725.00

Pack Size
Product Info

Matrix Compatibility Serum, Plasma, Tissue Culture Media
Assay Range

1.95 - 125 pg/ml

LLOQ

1.95 pg/ml

Need more sensitivity? Check out our Sample Testing Services

Assay Length 22 hours, 30 minutes
Specificity Human Interferon Alpha

 

This high sensitivity Human IFN-Alpha ELISA kit is designed to provide accurate low pg/ml measurement of all human IFN-Alpha subtypes in autoimmune sera, normal serum, EDTA plasma, and tissue culture media (TCM). This unique feature provides an improved view of global IFN-Alpha production in sample analysis. 

 

*For a TCM-compatible all-subtype ELISA, we recommend our Human IFN-Alpha All-Subtype ELISA Kit, High Sensitivity (Cat. No. 41135-1).

Specifications

CV and Spike Recovery

Inter-Assay: ≤ 10%


Intra-Assay: ≤ 8%


Spike Recovery: ≥ 80% in Serum

Cross-reactivity

Cross-reacts with

  • Cynomolgus/Rhesus IFN-α

 

No cross-reactivity against

  • Human IFN-β, IFN-γ, or IFN-ω
  • Mouse or rat IFN-α, IFN-β or IFN-γ
  • Bovine IFN-τ
Synonyms IFN alpha, IFN-a, Multisubtype Interferon Alpha, Multisubtype Leukocyte Interferon, Leukocyte IFN, alpha interferon, interferon alfa, IFN alfa, interferon alpha 2a, IFN alpha 2a, interferon a, interferon alpha 2b, IFN alpha 2b, Type I interferon alpha, Type I IFN alpha
Storage 2-8°C
Expiration Date One year from the date of manufacture
Shipping Condition Wet Ice

 

 

Materials Provided

  • Pre-coated microtiter plate(s)
  • Plate Sealers
  • Wash Solution Concentrate
  • Human Interferon Alpha Standard, 10,000 pg/ml
  • Sample Buffer
  • Standard Diluent
  • Antibody Concentrate
  • HRP Conjugate Concentrate
  • Antibody Diluent
  • HRP Diluent
  • TMB Substrate
  • Stop Solution

 

Additional Materials Required (Not Provided)

  • Microtiter plate reader capable of reading a wavelength of 450 nm
  • Variable volume microtiter pipettes
  • Adjustable multi-channel pipette (50-200 μl)
  • Reagent reservoirs
  • Wash bottle or plate washing system
  • Distilled or deionized water
  • Serological pipettes (1, 5, 10 or 25 ml)
  • Disposable pipette tips (polypropylene)

Tech Info & Data

Tips, Tools and Troubleshooting:

 

Background

 

Interferons (IFNs) are a family of mammalian cytokines initially characterized by their ability to inhibit viral infection. They are synthesized and secreted by most cell types in response to pathogens. In addition to their antiviral properties, IFNs have also been shown to exhibit anti-proliferative, immunomodulatory and many other activities.

 

In humans, IFN-Alpha consists of a group of proteins that are greater than 85% homologous by amino acid sequence. Numerous individual human IFN-Alpha subtypes have been identified; many display different properties. It remains unclear why there are multiple IFN-Alpha subtypes. A variety of studies suggested they possess overlapping but also unique sets of biological activities.

 

 

Citations

23 Citations:

 

  1. Ou, B.S. et al., (2024), "Nanoparticle-Conjugated Toll-Like Receptor 9 Agonists Improve the Potency, Durability, and Breadth of COVID-19 Vaccines", ACS Nano DOI: 10.1021/acsnano.3c09700 (link)

  2. Biava, M. et al., (2023), "In Vitro and In Vivo Crosstalk between Type I IFN and IL-8 Responses in SARS-CoV-2 Infection", Microorganisms, 11(11):2787, PMID: 38004798, DOI: 10.3390/microorganisms11112787 (link)


  3. Grunhagel, B., et al., (2023), "Reduction of IFN-I Responses by Plasmacytoid Dendritic Cells in a Longitudinal Trans Men Cohort, iScience, DOI: 10.1016/j.isci.2023.108209 (link)


  4. Nagaoka, K. et al., (2023), "Dominant CT Patterns and Immune Responses during the Early Infection Phases of Different SARS-CoV-2 Variants", Viruses, 15:1304, DOI: 10.3390/v15061304 (link)


  5. Kida, Y. et al., (2023), "Lethal Interstitial Lung Disease Associated with a Gain-of-Function Mutation in IFIH1", J. Clin Immunol., PMID: 37126154, DOI: 10.1007/s10875-023-01494-8 (link)


  6. Kim, S.T. et al., (2023). "Interferon and interferon-induced cytokines as markers of impending clinical progression in ANA+ individuals without a systemic autoimmune rheumatic disease diagnosis", Arthritis Res. Ther., PMID: 36765391, DOI: 10.1186/s13075-023-02997-w (link)


  7. Bibby, J.A., et al., (2022), "Systematic single-cell pathway analysis to characterize early T cell activation, Cell Rep., 41(8):111697, PMID: 36417885, DOI: 10.1016/j.cellrep.2022.111697 (link)


  8. Rajamanickam, A. et al., (2022), "Restoration of dendritic cell homeostasis and Type I/Type III interferon levels in convalescent COVID-19 individuals, BMC Immunol., 23(1):51, PMID: 36289478, DOI: 10.1186/s12865-022-00526-z (link)


  9. Kubo, S. et al., (2022), "Lactoferrin and its digestive peptides induce interferon-a production and activate plasmacytoid dendritic cells ex vivo", Biometals, PMID: 36018422, DOI: 10.1007/s10534-022-00436-y (link)


  10. Nagaoka, N., et al., (2022), "Effect of Casirivimab/Imdevimab Treatment on Serum Type I Interferon Levels in SARS-CoV-2 Infection", Viruses, 14(7):1399, DOI: 10.3390/v14071399 (link)


  11. Edahiro, Y., Ohishi, K., Gotoh, A. et al., (2022),  "Efficacy and safety of ropeginterferon alfa-2b in Japanese patients with polycythemia vera: an open-label, single-arm, phase 2 study", Int. J. Hematol., PMID: 35430707, DOI: 10.1007/s12185-022-03341-9  (link)


  12. Benard, A. et al., (2021), "Interleukin-3 is a predicative marker for severity and outcome during SARS-CoV-2 infections", Nat Commun.12(1):1112, PMID: 33602937, DOI: 10.1038/s41467-021-21310-4 (link)


  13. Kanazawa, N. et al., (2021), Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency, Nature Communications, 12:6819, DOI: 10.1038/s41467-021-27085-y (link)


  14. Jablonska, A., et al.,  (2021), The TLR9 2848C/T Polymorphism Is Associated with the CMV DNAemia among HIV/CMV Co-Infected Patients, Cells, 10:2360, DOI: 10.3390/cells10092360, (link)


  15. Combes, Alexis, et al. (2020). Global Absence and Targeting of Protective Immune States in Severe COVID-19. Nature, 36 pgs. (link)

  16. Peluso, Michael, et al. (2020). Liver function test abnormalities in a longitudinal cohort of Thai individuals treated since acute HIV infection. PLOS Pathogens, 9 pgs. PMID: 31953919. (link)

  17. Dagenais-Lussier, Xavier, et al. (2019). USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLOS Pathogens, 32 pgs. PMID: 31658294. (link)

  18. Colavita, Francesca, et al. (2018). Overproduction of IL-6 and Type-I IFN in a Lethal Case of Chikungunya Virus Infection in an Elderly Man During the 2017 Italian Outbreak. Open Forum Infectious Diseases, 21 pgs. PMID: 30539034. (link)

  19. Williams, Dionna, et al. (2018). CCR2 Signaling Selectively Regulates IFN-alpha: Role of Beta-Arrestin 2 in IFNAR1 Internalization. Journal of Immunology, 19 pgs. PMID: 30504423. (link)

  20. Zhang, Guoliang, et al. (2018). A Proline Deletion in IFNAR1 Impairs IFN-Signaling and Underlies Increased Resistance to Tuberculosis in Humans. Nature Communications, 9 pgs. PMID: 29311663. (link)

  21. Murayama, Goh, et al. (2017). Enhanced IFN-alpha Production is Associated with Increased TLR7 Retention in the Lysosomes of Palasmacytoid Dendritic Cells in Systemic Lupus Erythematosus. Arthritis Research & Therapy, 11 pgs. PMID: 29052537. (link)

  22. Wither, Joan, et al. (2017). Presence of an Interferon Signature in Individuals Who are Anti-Nuclear Antibody Positive Lacking a Systemic Autoimmune Rheumatic Disease Diagnosis. Arthritis Research & Therapy, 11 pgs. PMID: 28245862. (link)

  23. Vanheule, Vincent, et al. (2016). Basic Chemokine-Derived Glycosaminoglycan Binding Peptides Exert Antiviral Properties Against Dengue Virus Serotype 2, Herpes Simplex Virus-1, and Respiratory Syncytial Virus. Biochemical Pharmacology, 13 pgs. PMID: 26551597. (link)

 

 

Background Literature:

 

  1. Staehelin et al. (1981) "A Rapid Quantitative Assay of High Sensitivity for Human Leukocyte Interferon with Monoclonal Antibodies" in Methods in Enzymology, Vol. 79 (Pestka, ed.), Academic Press, New York, 589-595.

  2. Kelder et al. (1986) "A Sandwich Radioimmunoassay for Human IFNa" in Methods in Enzymology, Vol. 119 (Pestka, ed.), Academic Press, New York, 582-587.

  3. Human IFN-α international reference standard provided by the NIH, reference no. Gxa01-901-535. Pestka (1986) "Interferon Standards and General Abbreviations" in Methods in Enzymology, Vol. 119 (Pestka, ed.), Academic Press, New York, 14-23.

  4. Rubinstein et al. (1981) "Human Leukocyte Interferon: Isolation and Characterization of Several Molecular Forms," Arch. Biochem. Biophys. 210, 307-318.

  5. Hobbs et al. (1982) "Purification and Characterization of Interferons from a Continuous Myeloblastic Cell Line," J. Biol. Chem. 257, 4071-4076.

Documentation

41115 CoA and Protocol

41115 Certificate of Analysis and Protocol

41115 TDS

41115 Technical Data Sheet

41115 SDS

41115 Safety Data Sheet

41115 Protocol

41115 Protocol

41115 CoA

41115 Certificate of Analysis

41115 Product Flyer

41115 Product Flyer